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Abstract
Single particle resonances in quantum wires are generally Fano resonances.
In the case of Fano resonances, the scattering phase shift in some channels
shows sharp phase drops and that in the other channels does not. The
phase shift in a particular channel can be measured and can yield information
about the integrated charge localized around the scatterer. This paper tries to
analyse whether some channels are more informative than others, so that an
experimentalist can measure the phase shift in only those channels. The paper
also shows how to deal with non-trivial interpretation of density of states ‘in the
absence of scattering’ in the case of scattering by topological defects.

1. Introduction

Miniaturization of devices eventually leads to systems that are so small that the laws of
physics are determined by quantum mechanics, and understanding the properties of so-called
mesoscopic systems becomes demanding [1]. Circuits of future devices will be made up of
quantum wires. Junctions in such circuits also have to be understood from the perspective of
quantum mechanics. Perhaps the simplest such junction is what is referred to as a three-prong
potential [2] which is schematically shown in figure 1. There are several papers that explore
the importance of such a junction in mesoscopic systems [3–5].

Recently, the phase shifts and resonances for such a three-prong geometry were measured
by Kobayashi et al [6, 7]. Such resonances in a three-prong structure have also attracted some
theoretical interest [8–10]. While in our case the resonances or quasi-bound states are created
by applying the potential V (see figure 1), in the experimental set up of Kobayashi et al, the
resonances are created by applying suitable gate voltages at certain places of the three-prong
potential that allow them to continuously switch between a ring geometry and a three-prong
geometry.

While bound states (or quasi-bound states) are important in understanding the
thermodynamic properties of a sample [11], the scattering states are important in understanding
the transport properties [12]. However, it is not always necessary to solve the bound states and
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Figure 1. A schematic diagram of the system studied. Three semi-infinite quantum wires meet at a
point B. In the thin regions the quantum mechanical potential V is zero but in the thick regions it is
not zero. The arrow shows the direction of propagation of an incident electron.

the scattering states separately. Both these states are solutions of the same Hamiltonian but with
different boundary conditions. It is possible to solve only the scattering states and thereby also
understand the bound states as an analytical continuation of the scattering states. At the heart
of this principle is the Friedel sum rule [13, 14] that states that for non-polarizable leads [13]

dθf

dE
≈ π[ρ(E)− ρ0(E)]. (1)

Here

θf = 1

2i
log Det[S], (2)

E is the incident electron energy, S is the scattering matrix, ρ(E) is the density of states
(DOS) at energy E in the presence of scattering, and ρ0(E) is the DOS in the absence of
scattering. θf is referred to as the Friedel phase. The RHS of equation (1) is therefore related
to the integrated charge localized around the scatterer and this can be determined from the
S matrix. The correction terms of equation (1) are small in the Wentzel–Kramers–Brillouin
(WKB) regime [13].

A number of experiments [6, 7, 15] have shown that the phase of a particular scattering
matrix element can be measured. Yeyati and Buttiker [16] first proposed that such phases can
be understood from the Friedel sum rule (FSR). It was later found that transmission zeros play a
special role [3, 9, 17, 18] and change our understanding of the FSR. Transmission zeros are also
called antiresonances. While they were studied for Aharnov–Bohm rings [19], their occurrence
in Fano resonances in mesoscopic quantum wires with defects is rather subtle although there is
the same underlying principle and they belong to the same class [20]. While the line shapes of
the Fano resonances were generalized [21], the universal features of the scattering phase shifts
at Fano resonances have recently attracted attention [3, 17, 22]. It is worthwhile mentioning
that Fano resonances are not just of interest in mesoscopic systems but are observed in many
different areas [23].

2. The problem

Normally, in mesoscopic systems, S is a large but finite matrix, and often all the matrix elements
are not completely independent. So, it may not be necessary to evaluate all the elements



Importance of individual scattering matrix elements at Fano resonances 5315

of S, in order to calculate θf. Moreover, in mesoscopic systems, it is possible to measure a
particular matrix element of S. One can measure the phase as well as the amplitude of the
matrix element [15]. For a large-dimensional S matrix, it may not be possible to measure all
the elements of S. So, it is important to know what kind of physical information can be obtained
from the phase of a particular matrix element and which are the important matrix elements. For
example, in the case of a strictly one-dimensional (1D) system, the scattering matrix is 2 × 2,
and [24]

d

dE
arg(T ) = dθf

dE
(3)

where T is the transmission amplitude and arg(T ) = arctan(Im[T ]/Re[T ]). The situation is
complicated in quasi-1D where a single transverse mode is populated and the scattering matrix
is 2 × 2. This is because of the presence of discontinuous changes in scattering phase shifts at
Fano resonances [3]. Such a system was studied in [14, 25], which is somewhat similar to the
system studied in this work and shown in figure 1. The difference is the absence of the lead
at point D and imposing a hard wall boundary condition at point D. As a result the S matrix
becomes 2 × 2. For such systems it was shown [14] that

d

dE
arg(T ) = dθf

dE
± πδ(E − E0). (4)

Here, E0 is the (Fermi) energy at which T = 0. T = 0 occurs because of Fano resonance and is
a general feature of quasi-1D [17]. The situation is further complicated in multichannel quasi-
1D where the dimensionality of the S matrix is more than 2 × 2. In the case of a multichannel
Fano resonance, there are sharp continuous phase drops at the minima of certain scattering
probabilities, while not so for others [13]. For example, in the case of the δ function potential
in a multichannel quantum wire, there are sharp drops in arg(Tmm) versus incident energy, when
|Tmm |2 is minimum. But, this does not happen for arg(Tmn) or arg(Rmn) or arg(Rmm). There it
was shown that when m �= n [13]

d

dE
arg(Rmn) = d

dE
arg(Rmm) = d

dE
arg(Tmn) = dθf

dE
(5)

where Rmn and Tmn are the reflection and transmission amplitudes from mth transverse channel
to the nth transverse channel, respectively, and Rmm is the reflection amplitude from the mth
transverse channel to mth transverse channel. Equation (5) is more general than equation (4).
It is applicable also to the potentials studied in [14] (described above) while equation (4) does
not apply to a multichannel wire with a δ function potential.

Equation (5) basically means that, for the systems studied in [13, 14], the integrated charge
is determined by the energy derivatives of those arg(Sαβ) that do not show a drop. Their
derivatives are identical to the derivatives of the Friedel phase θf. However, the δ function
potential, as well as the potentials studied in [14], are all point scatterers and it is not known
if this feature is general. This motivates us to study an extended potential that can exhibit
multichannel Fano resonance.

So in this paper we study the system shown in figure 1, as it is an extended potential. We
shall show that it can exhibit multichannel Fano resonance. It is a simple model, that allows
analytical understanding and allows us to check if the S matrix elements whose phase does not
show a negative slope carry the information about the DOS. Besides, the potential considered
here has certain subtleties. The subtlety arises with the interpretation of ρ0, as will be explained
in section 4.
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3. The scattering solution

Consider the geometry, schematically shown in figure 1. The thin lines are semi-infinite 1D
quantum wires with quantum mechanical potential V = 0, while the thick lines are quantum
wires with a potential V �= 0. An incident electron is shown by the arrow head and the quantum
mechanical wavefunctions in the different regions I, II, III, IV, V and VI are written below.

ψI = eik(x−l1 ) + R11e−ik(x−l1 ) (6)

ψII = Aeiqx + Be−iqx (7)

ψIII = Ceiqy + De−iqy (8)

ψIV = Feiqz + Ge−iqz (9)

ψV = T13eik(z−l3 ) (10)

ψVI = T12eik(y−l2 ) (11)

l1, l2 and l3 are defined in figure 1. These wavefunctions have to be continuous and current has
to be conserved at the junctions. From this we get a set of nine linear equations from which we
can solve the nine unknown coefficients, i.e., A, B,C, D, F,G, R11, T12 and T13. Similarly, we
have to solve the scattering problem when the incident electron comes from the top, in order to
obtain R22, T21, etc. Thus we can determine the scattering matrix. It is a three-channel problem
and the scattering matrix is 3 × 3, as shown below.

S =
( R11 T12 T13

T21 R22 T23

T31 T32 R33

)
. (12)

The definition of local density of states (LDOS) can be seen from text books [1]:

ρ(E) = − 1

π
Im Tr[Gret(r, r ′, E)] =

∑
k,l

δ(E − Ek,l)

∫ ∞

−∞
dr |ψk,l (r)|2.

Here Gret(r, r ′, E) is the retarded Green’s function. Allowed modes in the system are denoted
by momentum index k =

√
2m(E − V )/h̄2 and l can take three values (1, 2 and 3),

corresponding to an incident electron from three possible directions. Here m is the electronic
mass and v = h̄k/m. Starting from this definition we have found

ρ(E) = ρ(W )(E)+ 2

hv

∫ l1

−∞
dx + 2

hv

∫ ∞

l2

dy + 2

hv

∫ ∞

l3

dz + 2|R11|
hv

∫ l1

−∞
cos(2kx + η1) dx

+ 2|R22|
hv

∫ l2

−∞
cos(2ky + η2) dy + 2|R33|

hv

∫ l3

−∞
cos(2kz + η3) dz (13)

where ρ(W )(E) is the integrated local DOS in the thick region of figure 1, η1 = − arg(R11),
and so on. Here

ρ(W )(E) = ρ
(W )
1 (E)+ ρ

(W )
2 (E)+ ρ

(W )
3 (E) =

∑
l

ρ
(W )
l (E) (14)

where, for example,

ρ
(W )
1 (E) = 1

hv

[∫ 0

l1

|Aeiqx + Be−iqx |2 dx

+
∫ l2

0
|Ceiqy + De−iqy |2 dy +

∫ l3

0
|Feiqz + Ge−iqz |2 dz

]
(15)

and the others are similar, but the coefficients differ due to different boundary conditions. That
is, ρ(W )

1 (E) is calculated with the incident electron from the left, ρ(W )
2 (E) is calculated with
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the incident electron from the top, and ρ(W )

3 (E) is calculated with the incident electron from
the right. Substituting equation (13) in equation (1) and considering the mesoscopic leads to be
unpolarizable, we get

dθf

dE
≈ π[ρ(W )(E)− ρ

(W )

0 (E)]. (16)

The non-polarizability here means that the last three terms on the RHS of equation (13) are to
be ignored. Actually even if one does not want to invoke the non-polarizability of the leads, one
can evaluate the last three integrals and see that these terms are negligibly small in the regime
of interest, which is the WKB regime. This is the regime where transport occurs. For example,
the WKB regime for such constant potentials occurs for E > V . In this regime, |R11| or |R22|
or |R33| is an order of magnitude smaller than v (note that the factor h is present in all the
terms on the RHS of equation (13) and the integrands in the last three terms of equation (13)
are oscillatory functions and the integrations are smaller than 1).

4. Determination of ρ
(W)
0 (E)

Note that in the LHS of equation (16), one has to consider the absolute scattering phase shifts
(and not phase shifts relative to phase shifts in absence of scattering), and on the RHS ρ(W )(E)
is the DOS in the system in the presence of scattering, and ρ(W )

0 (E) is that in the absence of
scattering. One can have alternate formalisms, wherein one considers the relative phase shifts
on the LHS but all these are equivalent. If one works out the FSR in one particular formalism,
what its form will be in another formalism is obtained by simple algebra. So we shall consider
absolute phase shifts on the LHS because they can be defined for any system. ρ(W )(E) also can
be defined for any system. But it is not clear what the DOS is in the absence of scattering in
the case of scattering by topological structures as in the present case. It is known that for such
topological structures there may not be any continuous way of going to the situation where
there is no scattering.

For example, in case of the three-prong potential, it is not possible to realize the state of
‘absence of scattering’. Even if we make the potential V in figure 1 continuously go to 0, we
get T12 = T13 = 2/3 and R11 = −1/3 for l1 = l2 = l3. Naturally, this is true also for unequal
l1, l2 and l3, since with zero potential there is no reflection at points A, C, and D. Nevertheless,
the result for V = 0 provides us with a way to solve ρ(W )

0 .
In the case of V = 0 we write

dθ ′
f

dE
≈ π[ρ(W ′)(E)− ρ

(W )
0 (E)] (17)

where W ′ stands for the thick region in figure 1 with V set to 0. θ ′ is calculated from the
S matrix when V = 0, while ρ(W )

0 (E) is independent of the scattering potential V . The
corresponding S matrix becomes

S′ =
(−(1/3)e2ikl1 (2/3)e2ikl2 (2/3)e2ikl3

(2/3)e2ikl1 −(1/3)e2ikl2 (2/3)e2ikl3

(2/3)e2ikl1 (2/3)e2ikl2 −(1/3)e2ikl3

)
(18)

where all matrix elements have their absolute phases. Using equation (2) we get

dθ ′
f

dE
= d

dE

(
1

2i
log Det[S′]

)
= 2π

(
l1

hv
+ l2

hv
+ l3

hv

)
. (19)

On the other hand, we can calculate ρ(W
′) directly using equations (14) and (15), with solutions

of equations (6)–(11). A straightforward derivation gives

ρ(W
′)(E) = 2l1

hv
+ 2l2

hv
+ 2l3

hv
. (20)
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Figure 2. arg(T13) (solid curve) decreases sharply but continuously, when |T13|2 (dotted curve)
minimizes. This is a signature of multichannel Fano resonance. l is the unit of length.

Substituting (19) and (20) in equation (17) gives

ρ
(W )

0 (E) = 0. (21)

Since ρ(W )

0 (E) is independent of depth of the potential V we get from equation (16)

dθf

dk
≈ h̄vρ(W )(k) (22)

where we have made a change of variable from E to wavevector k. So although at first it was
not clear how to define ρ(W )

0 (E) when we cannot realize the state of absence of scattering, we
have finally obtained that it is no different from a 1D situation. This is because the S-matrix
elements of the three-prong potential for V → 0 do not have any non-trivial energy dependence
(the energy dependence is the same as that of a free particle, i.e., of the form eikl ). Note that the
above method can also be used for more complicated junctions.

5. Results and discussions

We first show that the three-prong potential can exhibit multichannel Fano resonance. In
figure 2, we show that arg(T13) drops sharply when |T13|2 minimizes. In figure 3, we show
that arg(R11) drops sharply when |R11|2 minimizes. These are typical signatures of Fano
resonances [13]. Exactly similar behaviour has been obtained in the experiments of Kobayashi
et al [6, 7]. Since these phase shifts can be detected experimentally, it is important to investigate
the physical information that can be obtained from such phase shifts. In the following we will
show that arg(T12) does not show any drop and also calculate the DOS explicitly to check if
the DOS and the Friedel phase are related to arg(T12). Our previous experience, as discussed
in section 2, suggests that this could be the case.

In figure 4, we plot d
d(kl) arg(T12) as a function of kl. It shows sharp peaks and is positive

everywhere, implying that unlike in arg(T13) or arg(R11), there are no drops or negative slopes
in arg(T12). Also d

d(kl) arg(T12) is very close to dθf
d(kl) and h̄vρ(W )(kl). Here l is taken to be the

unit of length. However, unlike the case of the δ function potential in quasi-1D, d
d(kl) arg(T12)

is not identical to dθf
d(kl) . Nevertheless they are indeed very close to each other and identical
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Figure 3. arg(R11) (solid curve) decreases sharply but continuously, when |R11|2 (dotted curve)
minimizes. This is a signature of multichannel Fano resonance. l is the unit of length.
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Figure 4. d
d(kl) arg(T12) (solid curve) is positive everywhere, implying that there are no negative

slopes in arg(T12).
d

d(kl) arg(T12) (solid curve) and dθf
d(kl) (dotted curve) are very close to each other,

implying that arg(T12) should carry all the information about the DOS. Explicit calculations of
h̄vρ(W)(kl) (dashed curve) confirm this. l is the unit of length.

for practical purposes when the Fano resonances are long lived (the coupling to the leads
is weak and the resonances are very sharp). This is usually what is seen in quantum dot
experiments [6, 7]. However, for Fano resonances with short life times, there are quantitative
differences, although there is qualitative similarity, as shown in figure 5. In figure 6, we
consider a shorter value for the length l2. As a result, along with the Fano resonances, there are
also some Breit–Wigner resonances. The resonances due to multiple scattering between A and
B (or between B and C) are Breit–Wigner resonances, while those due to multiple scattering
between B and D are Fano resonances. All these resonances are clearly characterized by a
peak in the DOS. All of them are long lived resonances as we are using a large value for V .

d
d(kl) arg T12 gives all these peaks qualitatively and quantitatively for the Fano resonances. But
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Figure 6. Here we plot the same things as in figure 4. The difference is that l2 is much
shorter compared to those in figure 4. Except for the third resonance, all the resonances are Fano
resonances. d

d(kl) arg(T12) is quantitatively similar to h̄vρ(W)(kl) only at the Fano resonances.

it completely misses the third resonance, which is a Breit–Wigner resonance. On can check
with different parameter values that the DOSs at the Fano resonances are correctly given by

d
d(kl) arg T12, but at the Breit–Wigner resonances they are not.

6. Conclusions

Fano resonances occur very frequently in mesoscopic systems. Not much is known about
scattering phase shifts for Fano resonances. We show that the three-prong potential is a simple
model that gives multichannel Fano resonance. Unlike previously studied potentials that show
Fano resonances, this is an extended potential. In the case of Fano resonances, scattering
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phase shifts in only some particular channels show sharp phase drops while others do not.
The channels that do not show the phase drops seem to be the more informative channels and
hence very special channels. It seems that the DOS is related to the scattering phase shifts of
these special channels. As this is exact for point scatterers, we were tempted to check it for an
extended scatterer that exhibited Fano resonance. The three-prong potential studied shows that
this is true when the Fano resonances are long lived. In all the experiments so far [6, 7, 15]
one has encountered long lived Fano resonances where the phase drops are very sharp. As
the life time of the resonances decreases, the energy derivative of the scattering phase shifts
in these special channels and integrated charge inside the scatterer start deviating from each
other. However, they are qualitatively similar. For Breit–Wigner resonances, there is not even
qualitative agreement between them. The phase shift in the channels that exhibit the phase
drops do not give any information about the DOS, qualitatively or quantitatively, for long lived
resonances or short lived resonances. So far, experiments [6, 7, 15] and theories [9, 14] have
mostly focused on the phase shifts of these non-informative channels. We hope that this will
give some clues to future works to find a mathematical proof of this fact. Such a proof should be
consistent with the features observed in the three-prong potential and in the δ function potential
in a quantum wire.
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